top of page

Roll Call Men

Public·53 Brothers
Daniel Hall
Daniel Hall

Outer Space



The plasma between galaxies is thought to account for about half of the baryonic (ordinary) matter in the universe, having a number density of less than one hydrogen atom per cubic metre and a kinetic temperature of millions of kelvins.[3] Local concentrations of matter have condensed into stars and galaxies. Intergalactic space takes up most of the volume of the universe, but even galaxies and star systems consist almost entirely of empty space. Most of the remaining mass-energy in the observable universe is made up of an unknown form, dubbed dark matter and dark energy.[4][5][6][7]




outer space



Outer space does not begin at a definite altitude above Earth's surface. The Kármán line, an altitude of 100 km (62 mi) above sea level,[8][9] is conventionally used as the start of outer space in space treaties and for aerospace records keeping. Certain portions of the upper stratosphere and the mesosphere are sometimes referred to as "near space". The framework for international space law was established by the Outer Space Treaty, which entered into force on 10 October 1967. This treaty precludes any claims of national sovereignty and permits all states to freely explore outer space. Despite the drafting of UN resolutions for the peaceful uses of outer space, anti-satellite weapons have been tested in Earth orbit.


Humans began the physical exploration of space during the 20th century with the advent of high-altitude balloon flights. This was followed by crewed rocket flights and, then, crewed Earth orbit, first achieved by Yuri Gagarin of the Soviet Union in 1961. The economic cost of putting objects, including humans, into space is very high, limiting human spaceflight to low Earth orbit and the Moon. On the other hand, uncrewed spacecraft have reached all of the known planets in the Solar System. Outer space represents a challenging environment for human exploration because of the hazards of vacuum and radiation. Microgravity has a negative effect on human physiology that causes both muscle atrophy and bone loss.


The present day shape of the universe has been determined from measurements of the cosmic microwave background using satellites like the Wilkinson Microwave Anisotropy Probe. These observations indicate that the spatial geometry of the observable universe is "flat", meaning that photons on parallel paths at one point remain parallel as they travel through space to the limit of the observable universe, except for local gravity.[14] The flat Universe, combined with the measured mass density of the Universe and the accelerating expansion of the Universe, indicates that space has a non-zero vacuum energy, which is called dark energy.[15]


Outer space is the closest known approximation to a perfect vacuum. It has effectively no friction, allowing stars, planets, and moons to move freely along their ideal orbits, following the initial formation stage. The deep vacuum of intergalactic space is not devoid of matter, as it contains a few hydrogen atoms per cubic meter.[20] By comparison, the air humans breathe contains about 1025 molecules per cubic meter.[21][22] The low density of matter in outer space means that electromagnetic radiation can travel great distances without being scattered: the mean free path of a photon in intergalactic space is about 1023 km, or 10 billion light years.[23] In spite of this, extinction, which is the absorption and scattering of photons by dust and gas, is an important factor in galactic and intergalactic astronomy.[24]


Stars, planets, and moons retain their atmospheres by gravitational attraction. Atmospheres have no clearly delineated upper boundary: the density of atmospheric gas gradually decreases with distance from the object until it becomes indistinguishable from outer space.[25] The Earth's atmospheric pressure drops to about 0.032 Pa at 100 kilometres (62 miles) of altitude,[26] compared to 100,000 Pa for the International Union of Pure and Applied Chemistry (IUPAC) definition of standard pressure. Above this altitude, isotropic gas pressure rapidly becomes insignificant when compared to radiation pressure from the Sun and the dynamic pressure of the solar wind. The thermosphere in this range has large gradients of pressure, temperature and composition, and varies greatly due to space weather.[27]


Outside a protective atmosphere and magnetic field, there are few obstacles to the passage through space of energetic subatomic particles known as cosmic rays. These particles have energies ranging from about 106 eV up to an extreme 1020 eV of ultra-high-energy cosmic rays.[36] The peak flux of cosmic rays occurs at energies of about 109 eV, with approximately 87% protons, 12% helium nuclei and 1% heavier nuclei. In the high energy range, the flux of electrons is only about 1% of that of protons.[37] Cosmic rays can damage electronic components and pose a health threat to space travelers.[38] According to astronauts, like Don Pettit, space has a burned/metallic odor that clings to their suits and equipment, similar to the scent of an arc welding torch.[39][40]


Despite the harsh environment, several life forms have been found that can withstand extreme space conditions for extended periods. Species of lichen carried on the ESA BIOPAN facility survived exposure for ten days in 2007.[41] Seeds of Arabidopsis thaliana and Nicotiana tabacum germinated after being exposed to space for 1.5 years.[42] A strain of Bacillus subtilis has survived 559 days when exposed to low Earth orbit or a simulated martian environment.[43] The lithopanspermia hypothesis suggests that rocks ejected into outer space from life-harboring planets may successfully transport life forms to another habitable world. A conjecture is that just such a scenario occurred early in the history of the Solar System, with potentially microorganism-bearing rocks being exchanged between Venus, Earth, and Mars.[44]


During long-duration space travel, radiation can pose an acute health hazard. Exposure to high-energy, ionizing cosmic rays can result in fatigue, nausea, vomiting, as well as damage to the immune system and changes to the white blood cell count. Over longer durations, symptoms include an increased risk of cancer, plus damage to the eyes, nervous system, lungs and the gastrointestinal tract.[58] On a round-trip Mars mission lasting three years, a large fraction of the cells in an astronaut's body would be traversed and potentially damaged by high energy nuclei.[59] The energy of such particles is significantly diminished by the shielding provided by the walls of a spacecraft and can be further diminished by water containers and other barriers. The impact of the cosmic rays upon the shielding produces additional radiation that can affect the crew. Further research is needed to assess the radiation hazards and determine suitable countermeasures.[60]


There is no clear boundary between Earth's atmosphere and space, as the density of the atmosphere gradually decreases as the altitude increases. There are several standard boundary designations, namely:


In 2009, scientists reported detailed measurements with a Supra-Thermal Ion Imager (an instrument that measures the direction and speed of ions), which allowed them to establish a boundary at 118 km (73.3 mi) above Earth. The boundary represents the midpoint of a gradual transition over tens of kilometers from the relatively gentle winds of the Earth's atmosphere to the more violent flows of charged particles in space, which can reach speeds well over 268 m/s (880 ft/s).[65][66]


The Outer Space Treaty provides the basic framework for international space law. It covers the legal use of outer space by nation states, and includes in its definition of outer space, the Moon, and other celestial bodies. The treaty states that outer space is free for all nation states to explore and is not subject to claims of national sovereignty, calling outer space the "province of all mankind". This status as a common heritage of mankind has been used, though not without opposition, to enforce the right to access and shared use of outer space for all nations equally, particularly non-spacefaring nations.[67] It also prohibits the development of nuclear weapons in outer space. The treaty was passed by the United Nations General Assembly in 1963 and signed in 1967 by the USSR, the United States of America and the United Kingdom. As of 2017, 105 state parties have either ratified or acceded to the treaty. An additional 25 states signed the treaty, without ratifying it.[68][69]


Since 1958, outer space has been the subject of multiple United Nations resolutions. Of these, more than 50 have been concerning the international co-operation in the peaceful uses of outer space and preventing an arms race in space.[70] Four additional space law treaties have been negotiated and drafted by the UN's Committee on the Peaceful Uses of Outer Space. Still, there remains no legal prohibition against deploying conventional weapons in space, and anti-satellite weapons have been successfully tested by the US, USSR, China,[71] and in 2019, India.[72] The 1979 Moon Treaty turned the jurisdiction of all heavenly bodies (including the orbits around such bodies) over to the international community. The treaty has not been ratified by any nation that currently practices human spaceflight.[73]


A spacecraft enters orbit when its centripetal acceleration due to gravity is less than or equal to the centrifugal acceleration due to the horizontal component of its velocity. For a low Earth orbit, this velocity is about 7,800 m/s (28,100 km/h; 17,400 mph);[76] by contrast, the fastest piloted airplane speed ever achieved (excluding speeds achieved by deorbiting spacecraft) was 2,200 m/s (7,900 km/h; 4,900 mph) in 1967 by the North American X-15.[77]


To achieve an orbit, a spacecraft must travel faster than a sub-orbital spaceflight. The energy required to reach Earth orbital velocity at an altitude of 600 km (370 mi) is about 36 MJ/kg, which is six times the energy needed merely to climb to the corresponding altitude.[78] Spacecraft with a perigee below about 2,000 km (1,200 mi) are subject to drag from the Earth's atmosphere,[79] which decreases the orbital altitude. The rate of orbital decay depends on the satellite's cross-sectional area and mass, as well as variations in the air density of the upper atmosphere. Below about 300 km (190 mi), decay becomes more rapid with lifetimes measured in days. Once a satellite descends to 180 km (110 mi), it has only hours before it vaporizes in the atmosphere.[80] The escape velocity required to pull free of Earth's gravitational field altogether and move into interplanetary space is about 11,200 m/s (40,300 km/h; 25,100 mph).[81] 041b061a72


About

Welcome to the group! You can connect with other members, ge...

Brothers

  • Rustam Panov
    Rustam Panov
  • Crack Hintss
    Crack Hintss
  • Iliyana Clark
    Iliyana Clark
  • Copperfield Cecilia
    Copperfield Cecilia
  • Crack Trick
    Crack Trick
Group Page: Groups_SingleGroup
bottom of page